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Abstract The analytical solutions of the non-steady-state concentrations of species
at a planar microelectrode are discussed. The analytical expression of the kinetics of
CE mechanism under first or pseudo-first order conditions with equal diffusion coef-
ficients at planar electrode under non-steady-state conditions are obtained by using
Homotopy perturbation method. These simple new approximate expressions are valid
for all values of time and possible values of rate constants. Analytical equations are
given to describe the current when the homogeneous equilibrium position lies heav-
ily in favour of the electroinactive species. Working surfaces are presented for the
variation of limiting current with a homogeneous kinetic parameter and equilibrium
constant. In this work we employ the Homotopy perturbation method to solve the
boundary value problem. Furthermore, in this work the numerical simulation of the
problem is also reported using Scilab program. The analytical results are found to be
in excellent agreement with the numerical results.

Keywords CE mechanism · Planar electrode · Reaction/diffusion equation ·
Mathematical modelling · Homotopy perturbation method

1 Introduction

The planar electrode is a popular tool in electroanalysis and mechanistic electrochem-
istry due to its favourable attributes in an electrochemical experiment. Microelectrodes
are of great practical interest for quantitative in vivo measurements, e.g. of oxygen
tension in living tissues [1–3], because electrodes employed in vivo should be smaller
than the unit size of the tissue of interest. Microelectrodes having the geometry of a
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hemisphere resting on an insulating plane are difficult to fabricate, but their behaviour
is easily predicted [4]. Planar microelectrode processes involving a follow-up homog-
enous chemical reaction are very common and largely examined in the literature.

As far back as 1984, Fleischmann et al. [5,6] used planar electrodes to determine the
rate constants of coupled homogeneous reactions (CE, EC’, ECE, and DISPI mech-
anism). Also, the measurement of the current at microelectrodes is one of the easiest
and yet most powerful electrochemical methods for quantitative mechanistic investi-
gations. In this work, we are interested in finding the mass transport limiting current
response for the CE mechanism at a planar microelectrode. For each mechanism, the
electroinactive species A is in dynamic equilibrium with the electroinactive species
B via a homogeneous chemical step. The decay of species A is described by the first
order forward rate constant k f and the reverse of this process is described by the
backward rate constant kb, which is first order for the CE mechanism. In Ref. [7], CE
mechanism was considered when species C is present in great excess. All the species
are considered to have a diffusion coefficient D.

In general, the characterization of subsequent homogenous reactions involves the
elucidations of the mechanism of reaction, as well as the determination of the rate
constants. Values for the limiting current were presented for a range of equilibrium
constants and rate constants. Refs. [8] and [9] also used the same simulation tech-
nique to CE mechanism investigating the case of very fast homogeneous kinetics but
where the three species have unequal diffusion coefficients. However, to the best of our
knowledge, there were no rigorous analytical solutions of the kinetics of CE reaction
schemes under first or pseudo-first order conditions with equal diffusion coefficients
at planar microelectrodes under non-steady-state conditions for all possible values
of parameters k1, k2, k3, k4, k5 and k6 have been reported. The purpose of this com-
munication is to derive approximate analytical expressions for the non-steady-state
concentrations and current at planar electrode for all possible values of parameters
and for short time using Homotopy perturbation method.

2 Mathematical formulation of the boundary value problem

As a representative example of the reaction-diffusion problems considered, the stan-
dard pseudo-first-order homogeneous and heterogeneous steps

A � B + C

B ± e− → products

has been chosen, with initial and boundary conditions corresponding to the potential
step for all planar electrodes. Under steady-state conditions, the local concentrations
of the species do not change. The mass transport equations are set equal to zero. We
consider the differential equations with diffusion described by the concentration of
the three species leads to the following equations [10].

∂a

∂t
= D

∂2a

∂x2 − k f a + kbbc = 0 (1)
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∂b

∂t
= D

∂2b

∂x2 + k f a − kbbc = 0 (2)

∂c

∂t
= D

∂2c

∂x2 + k f a − kbbc = 0 (3)

where a, b and c denote the concentration of the species A, B and C . The variables x
and t stand for space and time respectively. D is the diffusion coefficient of the species
A, B and C . The constants κ f and κb are described the forward and backward rate
constants respectively. The boundary conditions reduce to

t = 0, a = a0, b = b0, c = c0 (4)

x = l,
∂a

∂x
= 0, b = 0,

∂c

∂x
= 0 (5)

x → ∞, a → a0, b → b0, c → c0 (6)

where a0, b0 and c0 are the bulk concentrations of the species A, B and C . The current
density is defined as:

i = nF AD
∂b

∂x

∣
∣
∣
∣
x=l

(7)

where n is the number of electrons and F is the Faraday constant. Using the following
dimensionless parameters

u = a

a0
; v = b

b0
;w = c

c0
; X = x

l
; T = Dt

l2 ; k1 = k f l2

D
; k2 = kbl2b0c0

Da0
;

k3 = k f l2a0

Db0
; k4 = kbl2c0

D
; k5 = k f l2a0

Dc0
; k6 = kbl2b0

D
(8)

we get the dimensionless non-linear reaction diffusion equations for planar electrode
as follows:

∂u

∂T
= ∂2u

∂X2 − k1u + k2vw = 0 (9)

∂v

∂T
= ∂2v

∂X2 + k3u − k4vw = 0 (10)

∂w

∂T
= ∂2w

∂X2 + k5u − k6vw = 0 (11)

where k1, k2, k3, k4, k5 and k6 are the dimensionless rate constants. The initial and
boundary conditions are represented as follows:

T = 0, u = 1, v = 1, w = 1 (12)

X = 1,
∂u

∂X
= 0, v = 0,

∂w

∂X
= 0 (13)

X → ∞, u = 1, v = 1, w = 1 (14)
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The dimensionless current is as follows:

ψ = il

nF ADb0
= (∂v/∂X)X=1 (15)

3 Analytical solution of the concentrations of the species and current using
Homotopy perturbation method

Recently, many authors have applied the HPM to various problems and demonstrated
the efficiency of the HPM for handling non-linear structures and solving various phys-
ics and engineering problems [11–14]. This method is a combination of homotopy in
topology and classic perturbation techniques. The set of expressions presented in Eqs.
(9)–(14) defines the initial and boundary value problem. He [15] used the HPM to
solve the Lighthill equation, the Duffing equation [16] and the Blasius equation [17].
The idea has been used to solve non-linear boundary value problems [18], integral
equations [19–21], Klein–Gordon and Sine–Gordon equations [22], Emden –Flower
type equations [23] and many other problems. This wide variety of applications shows
the power of the HPM to solve functional equations. This method is unique in its appli-
cability, accuracy and efficiency. The HPM [24–27] uses the imbedding parameter p
as a small parameter, and only a few iterations are needed to search for an asymptotic
solution. The dimensionless rate constants k1, k2, k3, k4, k5 and k6 are related to one
another, since the bulk solution is at equilibrium in the non-steady state. Using HPM
(see Appendix A and B), we can obtain the following solutions to the Eqs. (9–11).

u(X, T ) = 1 − k1

2

{

T er f c

(
X − 1

2
√

T

)

+ √
T (X − 1)

[(
X − 1

2
√

T

)

er f c

(
X − 1

2
√

T

)

− 1√
π

e− (X−1)2

4T

]}

−k1

2

[

2

√

T

π
e− (X−1)2

4T − (X − 1) er f c

(
X − 1

2
√

T

)]

(X − 1) (16)

v(X, T ) = 1−er f c

(
X−1

2
√

T

)

+k3

2

[

2

√

T

π
e− (X−1)2

4T − (X−1) er f c

(
X−1

2
√

T

)]

(X−1)

(17)

w(X, T ) = 1 + k5

2

{

T er f c

(
X − 1

2
√

T

)

+ √
T (X − 1)

[(
X − 1

2
√

T

)

er f c

(
X − 1

2
√

T

)

− 1√
π

e− (X−1)2

4T

]}

+k5

2

[

2

√

T

π
e− (X−1)2

4T − (X − 1) er f c

(
X − 1

2
√

T

)]

(X − 1) (18)

123



J Math Chem (2012) 50:1277–1288 1281

Equations (16–18) are the analytical solutions for the dimensionless concentrations as
a function of dimensionless distance X and time T . The current density is

ψ = 0.56419√
T

+ k3

√

T

π
(19)

Equation (19) represents the new approximate analytical expression for the current
for short and medium time and small values of parameter k3.

4 Numerical simulation

The system of non steady-state non-linear differential Eqs. (9–11) are also solved by
numerical methods. The function pdex4 in Scilab software which is a function of solv-
ing partial differential equations (PDE) is used to solve these equations. Its numerical
solution is compared with the solution obtained using HPM and it gives a suitable
result. The Scilab program is also given in Appendix C.

5 Result and discussion

The approximate analytical expressions of concentration of u, v and w [solutions of
Eqs. (9), (10) and (11)] are given in the Eqs. (16), (17) and (18). The Eqs. (9), (10)
and (11) are also solved by numerical methods. The function pdex4 in Scilab software
is used for solving the initial-boundary value problems for dimensionless non-linear
reaction diffusion equations for planar electrode. The obtained analytical results are
compared with the numerical results for various values of dimensionless parameters.
In all cases the concentration of the species A, B and C gives good agreement with
the numerical results. The concentration u and v are represented in Figs. 1 and 2.
From these figures, it is evident that the value of concentration gradually decreases
as T increases. The concentration increases as the distance increases and attains the
maximum value 1. Figure 3 represent the concentration profile of w. It is clear that
as time increases the value of concentration is also increases and the concentration
decreases as the distance increases.

The analytical expression for dimensionless non-steady state current is given in Eq.
(19). The dimensionless current ψ versus T for various values of k3 is given in Fig. 4.
From this figure the value of the current increases when the rate constant k3 increases.
The value of the current decreases with increasing value of time T .

6 Conclusions

In this work, the time dependent non-linear differential equations has been restudied
and solved analytically. In this paper, we have derived the analytical expressions of the
concentrations of the species A, B and C in terms of the parameters k1, k2, k3, k4, k5
and k6 using Homotopy perturbation method. In addition, we have also presented an
analytical expression for the non-steady state current for short time and small values
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Fig. 1 Plot of the two-dimensional case diagram of the concentration u versus the dimensionless distance
X . The concentrations were computed using Eq. (16) for various values of T and the parameter k1 = 0.25.
The key to the graph (solid line) represents the Eq. (16) and (dotted line) represents the numerical simulation

Fig. 2 Plot of the two-dimensional case diagram of the concentration v versus the dimensionless distance
X . The concentrations were computed using Eq. (17) for various values of T and the parameter k3 = 1.2.
The key to the graph (solid line) represents the Eq. (17) and (dotted line) represents the numerical simulation

of rate constants. The kinetics of this homogeneous step can in principle be studied by
observing how the limiting current responds to changes in electrode size. It must be
mentioned here that the physical situation as well as the boundary conditions employed
herein represent the simplest possible description whereas, in several recent investiga-
tions, more complicated but realistic problems [28–30] have been explored. Further,
based on the outcome of this work it is possible to calculate the concentration and
current for the CE mechanism for all microelectrodes for various complex boundary
conditions.
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Fig. 3 Plot of the two-dimensional case diagram of the concentration w versus the dimensionless distance
X . The concentrations were computed using Eq. (18) for various values of T and the parameter k5 = 0.3.
The key to the graph (solid line) represents the Eq. (18) and (dotted line) represents the numerical simulation

Fig. 4 Variation of dimensionless non-steady state current response ψ with dimensionless time T . The
curve is computed using Eq. (19) for various values of the parameter k3
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Appendix A

Solution of the Eqs. (9)–(11) using Homotopy perturbation method

In this Appendix, we indicate how Eqs. (16)–(18) in this paper are derived. To find
the solution of Eqs. (9)–(11) we first construct a Homotopy as follows:

(1 − p)

[
∂2u

∂X2 − ∂u

∂T

]

+ p

[
∂2u

∂X2 − k1u + k2vw − ∂u

∂T

]

= 0 (A1)

(1 − p)

[
∂2v

∂X2 − ∂v

∂T

]

+ p

[
∂2v

∂X2 + k3u − k4vw − ∂v

∂T

]

= 0 (A2)

(1 − p)

[
∂2w

∂X2 − ∂w

∂T

]

+ p

[
∂2w

∂X2 + k5u − k6vw − ∂w

∂T

]

= 0 (A3)

The boundary conditions are

T = 0, u = 1, v = 1, w = 1 (A4a)

X = 1,
∂u

∂X
= 0, v = 0,

∂w

∂X
= 0 (A4b)

X → ∞, u = 1, v = 1, w = 1 (A4c)

The approximate solutions of (A1), (A2) and (A3) are

u = u0 + pu1 + p2u2 + p3u3 + · · · · · · (A5)

v = v0 + pv1 + p2v2 + p3v3 + · · · · · · (A6)

w = w0 + pw1 + p2w2 + p3w3 + · · · · · · (A7)

Substituting Eqs. (A5), (A6) and (A7) into Eqs. (A1), (A2) and (A3) and comparing
the coefficients of like powers of p

p0 : ∂
2u0

∂X2 − ∂u0

∂T
= 0 (A8)

p1 : ∂
2u1

∂X2 − ∂u1

∂T
− κ1u0 + k2v0w0 = 0 (A9)

p0 : ∂
2v0

∂X2 − ∂v0

∂T
= 0 (A10)

p1 : ∂
2v1

∂X2 − ∂v1

∂T
+ κ3u0 − k4v0w0 = 0 (A11)

p0 : ∂
2w0

∂X2 − ∂w0

∂T
= 0 (A12)

p1 : ∂
2w1

∂X2 − ∂w1

∂T
+ κ5u0 − k6v0w0 = 0 (A13)
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Subjecting Eqs. (A8–A13) to Laplace transformation with respect to T we have,

p0 : ∂
2u0

∂X2 − su0 + 1 = 0 (A14)

p1 : ∂
2u1

∂X2 − su1 − k1u0 + k2v0w0 = 0 (A15)

p0 : ∂
2v0

∂X2 − sv0 + 1 = 0 (A16)

p1 : ∂
2v1

∂X2 − sv1 + k3u0 − k4v0w0 = 0 (A17)

p0 : ∂
2w0

∂X2 − sw0 + 1 = 0 (A18)

p1 : ∂
2w1

∂X2 − sw1 + k5u0 − k6v0w0 = 0 (A19)

The boundary conditions are

X = 1,
∂u

∂X
= 0, v = 0,

∂w

∂X
= 0 (A20)

X → ∞, u = 1

s
, v = 1

s
, w = 1

s
(A21)

where s is the Laplace variable and an overbar indicates a Laplace-transformed quan-
tity. Solving the Eqs. (A14–A19), and using the boundary conditions (A4a), (A4b)
and (A4c) we can find the following results

u0(X, s) = 1

s
(A22)

u1(X, s) = −k1

2

[

e−√
s(X−1)

s3/2

]

(X − 1)− k1

2

[

e−√
s(X−1)

s2

]

(A23)

v0(X, s) = 1

s
− e−√

s(X−1)

s
(A24)

v1(X, s) = k3

2

[

e−√
s(X−1)

s3/2

]

(X − 1) (A25)

w0(X, s) = 1

s
(A26)

w1(X, s) = k5

2

[

e−√
s(X−1)

s3/2

]

(X − 1)+ k5

2

[

e−√
s(X−1)

s2

]

(A27)

According to the HPM, we can conclude that

u0(X, s) = lim
p→1

u(X, s) = u0 + u1 + · · · (A28)
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v0(X, s) = lim
p→1

v(X, s) = v0 + v1 + · · · (A29)

w0(X, s) = lim
p→1

w(X, s) = w0 + w1 + · · · (A30)

We put Eqs. (A14) and (A15) into Eqs. (A28), (A16) and (A17) into Eqs. (A29) and
(A18) and (A19) into Eqs. (A30). Then using inverse Laplace transform, the final
results can be described by Eqs. (16–18) in the text. The remaining components of
un(X) and vn(X) can be completely determined such that each term is determined by
the previous term.

Appendix B

Nomenclature and units

Symbol Meaning Usual dimension
a Concentration of the species A mole cm−3

b Concentration of the species B mole cm−3

c Concentration of the species C mole cm−3

a0 Bulk concentration of the species A mole cm−3

b0 Bulk concentration of the species B mole cm−3

c0 Bulk concentration of the species C mole cm−3

l Thickness of the planar electrode cm
κ f Forward rate constant s−1

κb Backward rate constant s−1

Da Diffusion coefficient of the species A cm2 s−1

Db Diffusion coefficient of the species B cm2 s−1

Dc Diffusion coefficient of the species C cm2 s−1

F Faraday constant C
n Number of electrons None
t Time s
u Dimensionless concentration of the species A None
v Dimensionless concentration of the species B None
w Dimensionless concentration of the species C None
T Dimensionless time None
k1, k2, k3
k4, k5 and k6

Dimensionless rate constants None

ψ Dimensional current None

Appendix C (Numerical simulation program)

function pdex4
m = 0;
x = linspace(1,5);
t = linspace(0, 1);
sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x, t);
u1 = sol(:, :, 1);
u2 = sol(:, :, 2);
u3 = sol(:, :, 3);
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figure
plot(x,u1(end,:))
title(‘u1(x, t)’)
xlabel(‘Distance x’)
ylabel(‘u1(x,3)’)
figure
plot(x,u2(end,:))
title(‘u2(x, t)’)
xlabel(‘Distance x’)
ylabel(‘u2(x,3)’)
figure
plot(x,u3(end,:))
title(‘u3(x, t)’)
xlabel(‘Distance x’)
ylabel(‘u3(x,3)’)
function [c, f, s] = pdex4pde(x, t, u, DuDx)
c = [1;1;1];
f = [1;1;1].*DuDx;
k = 0.1;
k1 =0.001;
k2=0.001;
F=−k*u(1)+k*u(2)*u(3);
F1=k1*u(1)−k1*u(2)*u(3);
F2=k2*u(1)−k2*u(2)*u(3);
s = [F;F1;F2];
function u0 = pdex4ic(x)
u0 = [1; 1;1];
function [pl, ql, pr,qr] = pdex4bc(xl,ul, xr, ur, t)
pl = [0; ul(2);0];
ql = [1;0;1];
pr = [ur(1)−1;ur(2)−1;ur(3)−1];
qr = [0;0;0];
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